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Abstract

This paper presents an FMM (Fast Multipole Method) for periodic boundary value problems for Maxwell’s equations
in 3D. The effect of periodicity is taken into account with the help of the periodised moment to local expansion (M2L)
transformation formula, which includes lattice sums. We verify the proposed method by comparing the obtained numerical
results with analytic solutions for models of the multi-layered dielectric slab. We then apply the proposed method to scat-
tering problems for periodic two-dimensional arrays of dielectric spheres and compare the obtained energy transmittances
with those from the previous studies. We also consider scattering problems for woodpile crystals, where we find a passband
related to a localised mode. Through these numerical tests we conclude that the proposed method is efficient and accurate.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Solving periodic boundary value problems for wave problems has been one of important subjects in science
and engineering because there are many applications which are formulated into problems of this type. This has
been particularly true in the field of electromagnetics, where periodicity plays important roles in the design of
gratings, wave guides, etc. Due to the development of nanotechnology, the importance of periodic boundary
value problems is further increased. For example, it is now possible to produce periodic structures called ‘pho-
tonic crystals’ which are composed of dielectric materials having a geometric periodicity comparable to the
wavelength of light [1]. Because of this periodicity, photonic crystals show various interesting behaviours.
For example, photonic crystals enable us to control light freely since they provide means to guide or store
it. In addition, one can design photonic crystals in a way that they prohibit the propagation of waves in a
0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
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certain frequency range called the stopband. One can also make a small passband within the stopband by
introducing a small defect in the periodic structure, which will produce a localised mode near the defect. Other
research and development activities include zero threshold lasers, large scale optical integrated circuit etc.,
which would have been impossible only with conventional technologies. Photonic crystals are thus expected
to revolutionise the optical technology in the future. Also noteworthy is another emerging technology called
metamaterials [2]. Metamaterials are a class of composite materials, which usually have subwavelength peri-
odic structures. Metamaterials exhibit curious behaviours which no natural materials possess. Particularly
interesting are the so called ‘left handed metamaterials’, which are said to have negative apparent refractive
indices. With left-handed metamaterials it will be possible to produce the so called ‘super lens’ having a very
high resolution which no materials with positive refractive indices can achieve. Typical left-handed metama-
terials have periodic structures composed of dielectric matrices (including air) with nano-scale metallic
inclusions.

For the analysis of the optical fields within periodic structures, it is customary to use numerical tech-
niques such as FDTD methods, FEM, BIEM (also called BEM or Method of Moments), and the methods
of the plane wave expansion, etc. As far as one is mainly interested in understanding fundamental properties
of periodic structures, it may be sufficient to deal with relatively simple models with these numerical meth-
ods. If one considers models with more complicated geometries, as will be the case when one is interested in
industrial applications, one will have to solve large scale problems. Boundary Integral Equation Methods
(BIEM) have potential as solvers for large problems because of their boundary only nature. This is partic-
ularly true when the problem is related to scattering since BIEM can deal with radiation conditions in a
natural manner. Although the OðN 2Þ (N is the number of unknowns) complexity of BIEM has been a seri-
ous problem in applying this method to large problems, the rapid development of the fast BIEMs including
the acceleration with Fast Multipole Methods (FMM) [3,4] has ameliorated the situation considerably in
these decades.

However, the investigations of the fast multipole accelerated BIEMs have so far been directed mainly to
standard problems of the benchmark type where one seeks to solve larger problems faster using relatively sim-
ple model problems. Although some of recent investigations consider applications of this method to real world
problems, we still see little applications of FMMs to periodic wave problems in 3D in spite of their important
applications in science and engineering. In view of this, the present investigation aims at formulating and test-
ing a periodic FMM for Maxwell’s equations in 3D.

As a matter of fact, the basic idea of using FMMs in periodic boundary value problems has been presented
in Greengard and Rokhlin [3], where they consider an infinite array of replicas of the unit cell in Laplace’s
equation in 2D. Their approach, however, is not without mathematical ambiguity since they evaluated a diver-
gent series using a physical argument, and its extension to dynamics is not straightforward. Otani and Nishim-
ura presented mathematically sound formulations for elastostatics in 2D [5] and in 3D [6] and demonstrated
their numerical performances. For wave problems, Otani and Nishimura considered Helmholtz’ equations in
2D [7]. To the best of the knowledge of the present authors, however, not much has been done in similar prob-
lems in 3D, except in a conference paper by Yeung and Barouch [8]. These authors use multipole expansions
around points which are not at the centre of replicas of the unit cell in order to improve the convergence of
lattice sums. But, this approach will not necessarily be efficient because the proposed change of the centres of
expansions will increase the required number of multipoles for a given accuracy.

In the present investigation we deal with two periodic boundary value problems for Maxwell’s equations
in 3D, where we impose periodic boundary conditions only in two directions in the three-dimensional space.
The periodicity is introduced with the help of the periodic Green’s function. The solution of the resulting
integral equation is accelerated with the periodic FMM which considers an infinite array of the replicas
of the unit cell. In evaluating the effects of these replicas we use lattice sums of multipoles which are com-
puted in the forms of Fourier integrals. After discussing the algorithm, we verify our approach by solving
scattering problems for dielectric slabs where analytical solutions are available. Our approach is then applied
to scattering problems for two-dimensional array of dielectric spheres and for woodpile structures, both of
which are standard and important models in the field of photonic crystals. In the latter problem we find a
passband related to a localised mode. Through these numerical tests we conclude efficiency and high accu-
racy of the proposed approach.
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2. Formulation

In this paper, we shall use standard diadic and index notations for vectors and tensors and the summation
convention for repeated indices. Also, the position vector of a point x will be denoted by either x or Ox

�!
.

2.1. Non-periodic formulations in R3

We first consider the scattering problem for Maxwell’s equations in 3D without imposing periodic bound-
ary conditions. The reader is referred to Nédélec [9] for the integral representations of the solutions for Max-
well’s equations.

2.1.1. Statement of the problem
We consider the whole space, R3, which is subdivided into N subdomains as shown in Fig. 1. Namely, we

have R3 ¼ D1 [ D2 [ � � � [ DN , Di \ Dj ¼ / ði 6¼ jÞ. In each of the subdomains Di we assume that the following
Maxwell’s equations are satisfied:
r� E ¼ ixliH in Di; ð1Þ
r �H ¼ �ix�iE in Di; ð2Þ
where x is the frequency (with e�ixt time dependence), �i and li are the dielectric constant and the magnetic
permeability for the material occupying Di. In addition, we assume that there exists one and only one infinite
subdomain denoted by DI .

As the boundary (interface) conditions we have the following: For a point x0 2 Sab (Sab :¼ oDa \ oDb, a 6¼ b)
we require
lim
xa!x0

EðxaÞ � Tðx0Þ ¼ lim
xb!x0

EðxbÞ � Tðx0Þ; ð3Þ

lim
xa!x0

HðxaÞ � Tðx0Þ ¼ lim
xb!x0

HðxbÞ � Tðx0Þ; ð4Þ
where T is an arbitrary vector tangential to Sab at x0, and limxa!x0 indicates the limit from within Da, etc.
In addition, we assume that there exists an incident wave denoted by (Einc;H inc) in DI , with which the scat-

tered waves, denoted by the superscript sca, are defined by Esca ¼ E � Einc and H sca ¼ H �H inc. For the scat-
tered waves we require the radiation conditions given as
ffiffiffiffi

�I
p

Esca �
ffiffiffiffiffi
lI

p
H sca � x

jxj

���� ���� 6 C

jxj2
;

ffiffiffiffi
�I
p

Esca � x

jxj þ
ffiffiffiffiffi
lI

p
H sca

���� ���� 6 C

jxj2
as jxj ! 1, where C is a constant.
Fig. 1. Scattering problem in the whole space.
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2.1.2. Boundary integral equations

The fundamental solutions Cip for Maxwell’s equations in 3D which satisfy
eijkeklmCmp;ljðxÞ � k2CipðxÞ ¼ dipdðxÞ
are well-known to have the following form:
Cip ¼
1

k2

o

oxi

o

oxp
þ dip

� �
G;
where k is the wave number defined by k ¼ x
ffiffiffiffiffi
�l
p

, dij is Kronecker’s delta, eijk is the permutation symbol and
dðxÞ is Dirac’s delta. Also, G is the fundamental solution for Helmholtz’ equation in 3D given as follows:
Gðx� yÞ ¼ eikjx�yj

4pjx� yj :
One may also write Cip in the following form modulo Dirac’s delta:
Cip ¼
1

k2
eijk

o

oxj
epqk

o

oyq

Gðx� yÞ:
By substituting the fundamental solution into the Green formula we obtain the following integral representa-
tions for E and H for x 2 Di:
EðxÞ ¼ diI E
incðxÞ þ

Z
oDi

mi � ðryGiÞ � ixlijiGi þ
i

x�i
ryGi divS ji

� �
dSy ; ð5Þ

HðxÞ ¼ diIH
incðxÞ þ

Z
oDi

�ji � ðryGiÞ � ix�imiGi þ
i

xli
ryGi divS mi

� �
dSy ; ð6Þ
where the subscript to G indicates the subdomain number. In this formula, ji and mi, respectively, are the sur-
face electric and magnetic current vectors for Di defined by
jiðyÞ ¼ niðyÞ �HðyÞ; miðyÞ ¼ EðyÞ � niðyÞ;

where ni stands for the outward unit normal vector on the surface of the domain Di, and divS indicates the
surface divergence defined by:
divS / ¼ �ðr � ð/� nÞÞ � n:

One obtains the following variational boundary integral equations [9] as one uses (5), (6) and the boundary
conditions given by (3) and (4):
0 ¼
X

d

�
ddI

Z
oDd

tdðxÞ � EincðxÞdSx þ
Z

oDd

Z
oDd

tdðxÞ � ðmdðyÞ � ryGdðx� yÞÞ
�

�ixldtdðxÞ � jdðyÞGdðx� yÞ þ i

x�d
divS tdðxÞdivS jdðyÞGdðx� yÞ

�
dSy dSx

�
; ð7Þ

0 ¼
X

d

�
ddI

Z
oDd

tdðxÞ �H incðxÞdSx þ
Z

oDd

Z
oDd

�tdðxÞ � ðjdðyÞ � ryGdðx� yÞÞ
�

�ix�dtdðxÞ �mdðyÞGdðx� yÞ þ i

xld
divS tdðxÞdivS mdðyÞGdðx� yÞ

�
dSy dSx

�
ð8Þ
where
td ¼ T 0 � nd ð9Þ

and T 0 is a test function which is a tangent vector field on S :¼

S
doDd . The tangential component of T 0 is as-

sumed to be continuous across possible curves of discontinuity on S. The sums in (7) and (8) are on subdo-
mains whose boundaries have non-void intersections with the support of T 0. Hence, these sums include a and b

when the support of T 0 is included in Sab to test the continuity condition between Da and Db. Note that these



4634 Y. Otani, N. Nishimura / Journal of Computational Physics 227 (2008) 4630–4652
equations are valid also at points where more than two subdomains meet. Also, note that (7) and (8) have no
irregular frequencies since they are nothing other than the variational statements for the so called PMCHW(T)
formulation [10], which is known to have unique solutions.

2.1.3. Fast multipole methods

This section collects formulae required in the fast multipole methods for Maxwell’s equations for the pur-
pose of referential convenience. The reader is referred to Chew et al. [10] for the details, although the formu-
lation used in this paper is not identical with the one used by Chew et al.

In FMM for wave problems in frequency domain, we use two types of expansions of the fundamental solu-
tion. Namely,

� FMM based on the series expansion of the fundamental solution (low frequency FMM).
� FMM based on the diagonal form [11].

In this paper we follow Otani and Nishimura [12] to switch between these formulations depending on the level
in the tree structure used in FMM, as we shall see in Section 3. This approach is introduced in order to control
the accuracy of FMM. See also Jiang and Chew [13] and Cheng et al. [14] for related approaches.

We first present the low frequency FMM. To this end, we prepare the multipole expansions for the funda-
mental solution G for Helmholtz’ equation in 3D in the following form:
Gðx� yÞ ¼ eikjx�yj

4pjx� yj ¼
ik
4p

X1
n¼0

Xn

m¼�n

ð2nþ 1ÞeI m
n ðOy
�!ÞOm

n ðOx
�!Þ; ð10Þ
where we have assumed jOx
�!j > jOy

�!j. Also, the functions Om
n and eI m

n , together with a related function Im
n , are

defined as follows:
Om
n ðOx
�!Þ ¼ hð1Þn ðkjOx

�!jÞY m
n

Ox
�!
jOx
�!j

 !
;

eI m
n ðOx
�!Þ ¼ jnðkjOx

�!jÞY m
n

Ox
�!
jOx
�!j

 !
; Im

n ðOx
�!Þ ¼ jnðkjOx

�!jÞY m
n

Ox
�!
jOx
�!j

 !
;

ð11Þ
where hð1Þn and jn stand for the spherical Hankel function of the first kind and nth order and the spherical Bes-
sel function of the nth order, respectively. Also, Y m

n denotes the spherical harmonics.
The functions Om

n and eI m
n allow the following expansions:
eI m
n ðO0y
�!
Þ ¼

X1
n0¼0

Xn0

m0¼�n0

X
l2Wðn;n0 ;m;m0Þ

ð2n0 þ 1Þð�1Þm
0
W n;n0;m;m0 ;l

eI�m0

n0 ðOy
�!ÞI�m�m0

l ðO0O
��!
Þ; ð12Þ

Om
n ðOx
�!Þ ¼X1

n0¼0

Xn0

m0¼�n0

X
l2Wðn;n0 ;m;m0Þ

ð2n0 þ 1Þð�1Þmþn0W n;n0 ;m;m0 ;lI�m0

n0 ðxx0
�!ÞOmþm0

l ðOx0
��!Þ: ð13Þ
In (13), we have assumed jxx0
�!j < jOx0

��!j. In these formulae, W n;n0;m;m0 ;l is a number related to the Wigner 3-j sym-

bol [15] (the number given by
� � �
� � �

� �
in the following) as follows:
W n;n0;m;m0;l ¼ ð2lþ 1Þin0�nþl n n0 l

0 0 0

� �
n n0 l

m m0 �m� m0

� �
:

Also, the set Wðn; n0;m;m0Þ in (12) and (13) is defined by
Wðn; n0;m;m0Þ ¼ fljl 2 Z; nþ n0 þ l : even; maxfjmþ m0j; jn� n0jg 6 l 6 nþ n0g:

We next derive multipole expansions for E and H . To this end it is convenient to start from alternative integral
representations for E and H given below:
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EiðxÞ ¼ �
1

k2
eikj

o

oxk

Z
oDi

�epqrersj
o

oys

o

oyq

Gðx� yÞmpðyÞ þ ixliepqj
o

oyq

Gðx� yÞjpðyÞ
 !

dSy ; ð14Þ

HiðxÞ ¼ �
eiuvevkj

ixlik2

o

oxu

o

oxk

Z
oDi

�epqrersj
o

oys

o

oyq

Gðx� yÞmpðyÞ þ ixliepqj
o

oyq

Gðx� yÞjpðyÞ
 !

dSy : ð15Þ
Substitution of (10) in (14) and (15) shows that the following definition for the multipole moments around O,
denoted by Mi;n;mðOÞ, is suitable:
Mj;n;mðOÞ ¼
Z
�epqrersj

o

oyq

o

oys

eI m
n ðOy
�!ÞmpðyÞ þ ixliepqj

o

oyq

eI m
n ðOy
�!ÞjpðyÞ

 !
dSy : ð16Þ
These multipole moments are transformed into the coefficients of the local expansion via the following for-
mula (M2L)
Lj;n;mðx0Þ ¼
X1
n0¼0

Xn0

m0¼�n0

X
l2Wðn0 ;n;m0 ;mÞ

ð2n0 þ 1ÞW n0;n;m0;m;l
eO�m�m0

l ðOx0
��!ÞMj;n0 ;m0 ðOÞ; ð17Þ
which is derived with the help of (13). With these coefficients one computes E and H using the following local
expansions:
EiðxÞ ¼ �
i

4pk

X
n

X
m

ð2nþ 1ÞLj;n;mðO0Þeikj
o

oxk

eI n
mðO0x
�!
Þ; ð18Þ

HiðxÞ ¼ �
1

4pxlk

X
n

X
m

ð2nþ 1ÞLj;n;mðO0Þeiuvevkj
o

oxu

o

oxk

eI n
mðO0x
�!
Þ: ð19Þ
The FMM algorithm requires us to shift the origin of multipole and local expansions. The formula for shifting
the origin of the multipole moments (M2M) is obtained from (12) in the following form:
Mj;n;mðO0Þ ¼
X1
n0¼0

Xn0

m0¼�n0

X
l2Wðn;n0;m;m0Þ

ð2n0 þ 1Þð�1Þm
0
W n;n0 ;m;m0 ;lI�m�m0

l ðO0O
��!
ÞMj;n0;�m0 ðOÞ: ð20Þ
Similarly, we derive the shift formula for the coefficients of the local expansion (L2L) in the following form:
Lj;n;mðx1Þ ¼
X1
n0¼0

Xn0

m0¼�n0

X
l2Wðn0 ;n;m0 ;�mÞ

ð�1Þmð2n0 þ 1ÞW n0 ;n;m0 ;�m;lIm�m0

l ðx0x1
��!ÞLj;n0 ;m0 ðx0Þ: ð21Þ
Use of the above formulae as they are, truncating the infinite series with p terms, would result in an algorithm
with Oðp5Þ complexity. In our implementation, however, we reduce this complexity to Oðp3Þ by using rotations
of the coordinates and recursive formulae as discussed in Gumerov and Duraiswami [16].

We next present the diagonal form. To this end we prepare the plane wave expansion of the fundamental
solution G of Helmholtz’ equation in 3D given as follows:
Gðx� yÞ ¼ ik

ð4pÞ2
Z
jk̂j¼1

eiðx�XÞ�k
X

n

X
m

inð2nþ 1ÞY m
n ðk̂ÞOm

n ðX � YÞ
 !

e�iðy�YÞ�k dSk̂; ð22Þ
where k ¼ kk̂ and X and Y are points near x and y, respectively. The expression within the large parentheses
on the RHS of the above formula can be rewritten in the following form:
X

n�0

inð2nþ 1ÞP n k̂ � X � Y

jX � Yj

� �
hð1Þn ðkjX � Y jÞ; ð23Þ
where P n is the Legendre polynomial of the order n. Also, we have the following expansion of the plane wave
in terms of the functions introduced in (11):
eix�k ¼
X1
n¼0

Xn

m¼�n

inð2nþ 1ÞeI m
n ðxÞY m

n ðk̂Þ: ð24Þ
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We now proceed to the formulation of the diagonal form. The formulae for the plane wave expansion in (22)
and a series expansion of eix�k in (24) are substituted in the integral representations for E and H in (14) and (15)
to yield the diagonal form version of the multipole moments, denoted by eF jðh;/;OÞ, in the following form
(M2F):
eF jðh;/;OÞ ¼
X1
n¼0

Xn

m¼�n

i�nð2nþ 1ÞY m
n ðh;/ÞMj;n;mðOÞ; ð25Þ
where h and / are the polar coordinates for the unit vector k̂ (i.e. k̂ ¼ ð1; h;/Þ). One then uses (22) and (23) to
convert eF jðh;/;OÞ into the diagonal form version of the coefficients of the local expansion denoted byeH jðh;/; x0Þ in the following manner (F2H):
eH jðh;/; x0Þ ¼ eF jðh;/;OÞ
X
n�0

inð2nþ 1ÞP n k̂ � Ox0
��!
jOx0
��!j

 !
hð1Þn ðkjOx0

��!jÞ: ð26Þ
Finally, the conversion from the coefficients of the local expansion for the diagonal form into those of the low
frequency FMM is done with the following formula (H2L):
Lj;n;mðx0Þ ¼
in

4p

Z
jk̂j¼1

eH jðh;/; x0ÞY m
n ðk̂ÞdSk̂: ð27Þ
In addition to these formulae, we use (22) to obtain the formula for the shift of the origin for eF j (F2F) in the
following form:
eF jðh;/; y1Þ ¼ eF jðh;/; y0Þe�ikk̂�y1y0
��!

: ð28Þ

Similarly, the shift of the origin formula for eH j is given by the following expression (H2H):
eH jðh;/; x1Þ ¼ eH jðh;/; x0Þeikk̂�x0x1
��!

: ð29Þ
2.2. Formulation of the periodic boundary value problems

We next consider the FMM formulation for periodic boundary value problems. We assume, for the pur-
pose of simplicity, that the domain under consideration is periodic in two mutually perpendicular directions
and that the periods in these two directions are equal. We denote this period by L. Also, we take a cartesian
coordinate system in a way that the directions of the periodicity coincide with the x2 and x3 coordinate direc-
tions. It might appear more natural to take the x3 axis perpendicular to the plane of the periodicity in view of
the expressions for the lattice sums which use the spherical harmonics; these functions are ‘isotropic’ only in
x1;2 directions. A careful comparison shows, however, that there is little difference in the efficiency of the algo-
rithms resulting from these choices of the coordinate systems. We therefore decided to choose the axis in this
manner considering the ease of computing S3

ml resulting from the dm0 factor as we shall see in the Appendix (see
(41)).
2.2.1. Statement of the problem

Let D be the domain defined by
D ¼ ð�1;1Þ � ð�L=2; L=2Þ � ð�L=2; L=2Þ

which is further subdivided into N subdomains D ¼ D1 [ D2 [ � � � [ DN (Fig. 2). The fields within these
subdomains satisfy Maxwell’s equations given by (1) and (2). The subdomain which extends to x1 ! �1 is
denoted by DI where we consider the incident plane wave of the following forms:
E inc ¼ ainceikinc �x; H inc ¼ binceikinc �x:
On the periodic boundaries given by Sp ¼ fxj x 2 oD; jx2j ¼ L=2 or jx3j ¼ L=2g we require the following peri-
odic boundary conditions:



Fig. 2. Periodic boundary value problems.

Y. Otani, N. Nishimura / Journal of Computational Physics 227 (2008) 4630–4652 4637
Eðx1; L=2; x3Þ ¼ eib2 Eðx1;�L=2; x3Þ;
Eðx1; x2; L=2Þ ¼ eib3 Eðx1; x2;�L=2Þ;
Hðx1; L=2; x3Þ ¼ eib2 Hðx1;�L=2; x3Þ;
Hðx1; x2; L=2Þ ¼ eib3 Hðx1; x2;�L=2Þ;
where bi is the phase difference of the incident wave at xi ¼ �L=2 and xi ¼ L=2, expressed by
bi ¼ Lkinc
i ; i ¼ 2; 3:
2.2.2. Periodic Green’s function

The two periodic Green’s function for Maxwell’s equations is denoted by CP
ip. The function CP

ip satisfies the
governing equation and the periodic boundary conditions given by
eijkeklmCP
mp;ljðx� yÞ � k2CP

ipðx� yÞ ¼ dipdðx� yÞ;

CP
ipðx1; L=2; x3Þ ¼ eib2CP

ipðx1;�L=2; x3Þ; ð30Þ
CP

ipðx1; x2; L=2Þ ¼ eib3CP
ipðx1; x2;�L=2Þ; ð31Þ

oCP
ip

ox2

ðx1;L=2; x3Þ ¼ eib2
oCP

ip

ox2

ðx1;�L=2; x3Þ; ð32Þ

oCP
ip

ox3

ðx1; x2; L=2Þ ¼ eib3
oCP

ip

ox3

ðx1; x2;�L=2Þ: ð33Þ
The function CP
ip is easily seen to be expressed in terms of the following lattice sums:
CP
ipðx� yÞ ¼

X
x2L

Cipðx� y� xÞeib�x; ð34Þ
where L stands for the lattice points defined by L ¼ fð0;x2;x3Þj x2 ¼ pL; x3 ¼ qL; p; q 2 Zg. CP
ip can also be

written in the following form:
CP
ipðx� yÞ ¼ 1

k2

o

oxi

o

oxp
þ dip

� �
GPðx� yÞ;
where GP is the periodic Green function for Helmholtz’ equation in 3D which allows the following expression
in terms of a lattice sum:
GPðx� yÞ ¼
X
x2L

eikjx�y�xj

4pjx� y� xj e
ib�x:
2.2.3. Boundary integral equation
The continuity of the tangential components of E and H on interfaces between subdomains gives the fol-

lowing variational integral equations:
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0 ¼
X

d

ddI

Z
oDdnSp

tdðxÞ � EincðxÞdSx þ
Z

oDdnSp

Z
oDdnSp

tdðxÞ � ðmdðyÞ � ryG
P
d ðx� yÞÞ

� 

�ixldtdðxÞ � jdðyÞGP
d ðx� yÞ þ i

x�d
divS tdðxÞdivS jdðyÞGP

d ðx� yÞ
�

dSy dSx

!
; ð35Þ

0 ¼
X

d

ddI

Z
oDdnSp

tdðxÞ �H incðxÞdSx þ
Z

oDdnSp

Z
oDdnSp

�tdðxÞ � ðjdðyÞ � ryG
P
d ðx� yÞÞ

� 

�ix�dtdðxÞ �mdðyÞGP
d ðx� yÞ þ i

xld
divS tdðxÞdivS mdðyÞGP

d ðx� yÞ
�

dSy dSx

!
ð36Þ
where td is defined as in (9). In addition, we require e�ib-periodicity to T 0 when T 0 extends beyond Sp. Note that
these integral equations include no unknowns on Sp.

2.2.4. Periodic FMM

We now consider a particular subdomain Da and assume, for the purpose of simplicity, that the boundary
oDa n Sp is included in a cube whose edges are of lengths L and are parallel to the coordinate axes. The cube
thus introduced is called the unit cell. The assumption that oDa n Sp is included in one cubic unit cell, however,
is not essential and can be removed without much difficulty.

From the lattice sum expression for CP
ip in (34) we see that the periodic boundary value problems can be

interpreted as an ordinary problem in an infinite domain with an infinite repetition of the replicas of the unit
cell (Fig. 3).

We now take the unit cell as the level 0 cell in FMM, and divide the set of replica cells into those adjacent to
the unit cell (denoted by CN ) and others (denoted by CF ). Correspondingly, the sum in CP is divided into the
contribution from CN , denoted by CPN which includes the contributions from the unit cell itself, and those
from CF , denoted by CPF. Namely, we have
CP
ij ¼ CPF

ij þ CPN
ij ;
where
CPF
ij ðx� yÞ ¼

X
x2L0

Cijðx� y� xÞeib�x;

CPN
ij ðx� yÞ ¼

X
x2L00

Cijðx� y� xÞeib�x;
L0 ¼ fð0;x2;x3Þj x2 ¼ pL; x3 ¼ qL; p; q 2 Z; jpjP 2 or jqjP 2g and L00 ¼ L n L0.
The evaluation of CPN

ij ðx� yÞ can be carried out using the standard FMM, and needs no further consider-
ation. Hence, we focus on the computation of CPF

ij ðx� yÞ in the rest of this section.
We first consider the diagonal forms. We start from the plane wave expansion for the fundamental solution

Cip given below:
Fig. 3. Replica cells.
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Cijðx� yÞ ¼ � 1

k2
ejpkekqi

o

oxp

o

oyq

Gðx� yÞ

¼ � ik

ð4pÞ2
Z
jk̂j¼1

ejpk
o

oxp
eiðx�XÞ�k

� �

�
X

n

X
m

inð2nþ 1ÞY m
n ðk̂ÞOm

n ðX � YÞ
	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

F2H formula

ekqi
o

oyq

e�iðy�YÞ�k

 !
dSk̂:
The factor within the second parentheses on the RHS corresponds to the F2H formula. As one substitutes the
above formula into (34) one obtains the plane wave expansion of CPF

ij in the following form:
CPF
ij ðx� yÞ ¼ � ik

ð4pÞ2
Z
jk̂j¼1

ejpk
o

oxp
eix�k

� �

�
X

n

X
m

inð2nþ 1ÞY m
n ðk̂Þ

X
x2L0

Om
n ð�xÞeib�x

	 
	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Periodised F2H formula

ekqi
o

oyq

e�iy�k

 !
dSk̂:
From this equation we see that the contribution from the non-adjacent replica cells is evaluated with the perio-
dised F2H formula given below:
eH jðh;/;OÞ ¼ eF jðh;/;OÞ
X
n�0

Xn

m¼�n

inð2nþ 1ÞY m
n ðk̂Þ

X
x2L0

Om
n ð�xÞeib�x

 !
; ð37Þ
where eF jðh;/;OÞ is the multipole moment of the level 0 cell (namely, the unit cell) and eH jðh;/;OÞ is the coef-
ficient of the local expansion of the level 0 cell.

Similarly, one obtains the periodised M2L formula in the low frequency FMM in the following form:
Lj;n;mðOÞ ¼
X1
n0¼0

Xn0

m0¼�n0

X
l2Wðn0 ;n;m0 ;mÞ

ð2n0 þ 1ÞW n0 ;n;m0 ;m;l

X
x2L0

eO�m�m0

l ð�xÞeib�x

 !
Mj;n0;m0 ðOÞ; ð38Þ
where Mj;n;mðOÞ is the multipole moment of the level 0 cell and Lj;n;mðOÞ is the coefficient of the local expansion
of the level 0 cell.

Eqs. (37) and (38) show that the formulation of the periodic FMM is completed once one finds a way to
evaluate the lattice sum
X

x2L0
eOm

n ð�xÞeib�x ð39Þ
efficiently. It is quite impractical to compute this lattice sum as is, since the convergence of this series is extre-
mely slow. We here propose to evaluate this lattice sum with the help of Fourier analysis, the details of which
are presented in the Appendix. For other approaches to compute lattice sums of the form in (39) the reader is
referred to Enoch et al. [17], for example.

3. Algorithm

In this paper we shall use both diagonal forms and the low frequency FMM switching between these for-
mulations depending on the size of cells as proposed by Otani and Nishimura [12]. Namely, we use diagonal
forms in the level l if kdl P Cdia is satisfied, where dl is the edge length of the cell at the level l. In levels where
kdl < Cdia holds, on the other hand, we use the low frequency FMM. In this approach the number Cdia is a
parameter which determines the level where we switch between formulations. In the present investigation
we use Cdia ¼ 28. This number has been determined numerically so that the relative error defined as
jSðx� yÞ � Gðx� yÞj
jGðx� yÞj



4640 Y. Otani, N. Nishimura / Journal of Computational Physics 227 (2008) 4630–4652
does not exceed 10�5 for 8x 2 Cl
1, 8y 2 Cl

2 for any combination of ðCl
1;C

l
2Þ, where Cl

1 is a cell in the level l and
Cl

2 is another in the interaction list of Cl
1. In the above expression, S is the approximant of G calculated with

the diagonal form in which the infinite series in (23) is truncated with 2p terms. The algorithm for this ap-
proach is indicated schematically in Fig. 4 which explains the case with kd0 > Cdia and in Fig. 5 which con-
siders the kd0

6 Cdia case.
The algorithm for the periodic FMM goes as follows: In the upward pass we consider only those cells in the

unit cell, and use the same algorithm as in the ordinary FMM except that we go up to the level 0 cell.
In the downward pass for the periodic FMM, we have to take into consideration not just the effects from

the cells in the unit cell, but also those from all other replica cells, whose multipole moments are the same as
those of the original cell in the unit cell except for the eib�x factor. As in the previous section, we divide the
replica cells into those adjacent to the unit cell (CN ) and others (CF ). The contribution from CF is evaluated
at the level 0 with the help of the periodised M2L or F2H formulae. The contribution from CN is evaluated in
the downward pass. For this purpose we extend the definition of the interaction list so that it contains nearby
cells in the replicas included in CN . Fig. 6 shows the interaction list for the ordinary FMM and the extended
interaction list for the periodic FMM. The above algorithm is explained in the following Fortran-like
pseudocode.

! upward pass
do level = bottom_level, 0, �1
do icell = all the cells in the current level

if (icell is a leaf) then
Use (16) and (25) to compute the multipole moments

else

Use (20) or (28) to add the multipole moments of the children to the multipole

moments of icell (M2M, F2F)

endif

enddo

if (level=switching level) then
Use (25) to convert the multipole moments for low frequency FMM to the multipole
moments for the diagonal form (M2F)

endif

enddo

! level = 0

Use (37) or (38) to convert the multipole moments of the replica cells to the coeffi-

cient of the local expansion (periodised F2H, M2L)

! downward pass

do level = 1, bottom_level

do icell = all the cells in the current level
level 0

switching
level

bottom
level

M

M F

F H

H L

L

M2M L2L

M2F H2L

F2F H2H

p-F2H

F2H

M2L

M2L

F2H

Fig. 4. Algorithm (with diagonal form).



level 0

bottom level

M2M L2L

p-M2L

M2L

M L

M2M L2L
M2L

M L

Fig. 5. Algorithm (with low frequency FMM).

current cell interaction list

current cell

replica cell

replica cell

original unit cell

original unit cell

ordinary FMM periodic FMM

1

2

3

Fig. 6. Interaction list.
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� Use (21) or (29) to convert the coefficients of the local expansion of the parent

cell to those of icell (L2L, H2H)

� Use (17) or (26) to convert the multipole moments of the cells within the extended
interaction list to the coefficients of the local expansion of icell (M2L, F2H)
if (icell is a leaf) then

Use (18), (19) and (27) to evaluate the potentials

endif

enddo

if (level = switching level) then

Use (27) to convert the coefficients of the local expansion for the diagonal

form to those of the low frequency FMM (H2L)

endif

enddo
4. Far fields

In the limit of x1 ! �1, the fields E and H allow the following expressions in terms of the superposition of
plane waves:
E� ¼
X

n

â�n eik�n �x þ d�Einc; H� ¼
X

n

b̂�n eik�n �x þ d�H inc; ð40Þ
where n is a multiple index defined by n ¼ ðn2; n3Þ, dþ ¼ 0, d� ¼ 1 and â�n and b̂�n are vectors such that the
relation
b̂�n ¼
1

xl�
k�n � â�n
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holds. Also, k�n is given by
k�n ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� � 1

L2 ðb2 þ 2n2pÞ2 � 1
L2 ðb3 þ 2n3pÞ2

q
1
L ðb2 þ 2n2pÞ
1
L ðb3 þ 2n3pÞ

0BB@
1CCA;
where k� stands for the wave number for D� and D� indicates the subdomain of D containing x1 ¼ �1. The
summation in (40) is taken over such n ¼ ðn2; n3Þ that the vector k�n is real. Fig. 7 shows a schematic view of
the far fields.

We now consider an inspection surface indicated by dashed lines in Fig. 7 and call the part of D� within the
inspection surface as D0�. We then have the following Green’s formula:
Z

oD0�

ðr � E1
�Þ � ðE2

� � nÞ � ðr � E2
�Þ � ðE1

� � nÞ
� 

dS ¼ 0:
We now substitute the far field expression in (40) into E1 and the following function into E2 in the above
Green’s formula:
E2
� ¼ ~ame�ik�m �x:
As we take the limit of letting the left and right ends of D0� and D0þ, respectively, tend to infinity in the resulting
equation (See Fig. 7. The surfaces thus introduced at the points of infinity are denoted by S�1), we obtain the
following formula:
~a�m � â�m ¼
xl�

2L2ðk�mÞ1

Z
oD0�nðSp[S�1Þ

n � m�2 � j1 �m1 � j�2
� 

dS;
where j1 and m1 are the surface electric and magnetic currents obtained as the numerical solution to the
boundary integral equations and j�2 and m�2 are given as
j�2 ¼ �
1

xl�
n� ðk�m � ~a�mÞe�ik�m �x; m�2 ¼ ð~a�m � nÞe�ik�m �x:
By taking two unit vectors orthogonal to k�m as ~a�m , consecutively, and by computing ~a�m � â�m for these cases, we
obtain â�m .

The amount of energy which passes through the plane S�1 at infinity is computed with the following
formula:
Re

Z
S�1

ðE� �H�Þ � n�1 dS ¼ L2
X

n

Reðâ�n � b̂�n Þ � n�1:
Fig. 7. Far fields.
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5. Numerical examples

In this section we shall present numerical examples obtained with the present formulation. We first state
techniques common to all the examples.

� As an iterative solver for linear equations we use Flexible GMRES (FGMRES) [18]. FGMRES differs from
the standard GMRES in that one can use different preconditioners for each of the iteration steps. This
means that one can precondition using iterative solvers. The criterion of convergence for FGMRES is
set to be 10�3 times the initial value unless stated otherwise. As the preconditioner we use the part of
the matrix computed directly in the FMM algorithm. The inversion in the process of preconditioning is car-
ried out approximately using GMRES, which we terminate after 100 iterations or when the norm of the
error is less than 10�1 times its initial value except in the cases of woodpile crystals. See Section 5.2.3 for
the parameters used in the woodpile case.
� In this paper we expand m and j in the integral equations in (35) and (36) using the Rao–Wilton–Glisson

basis function [19], which is a standard choice in the boundary integral approaches for Maxwell’s equa-
tions. Also, we have used Galerkin’s method to discretise the integral equations in (35) and (36). Namely,
we have used the Rao–Wilton–Glisson basis functions to tðx0Þ, as well.
� For the calculation we use FUJITSU PRIMEPOWER HPC2500 supercomputer of Academic Center for

Computing and Media Studies of Kyoto University. The code is OpenMP parallelised and the number
of CPUs used is 8 for sphere problems and 32 for others.

5.1. Verification

We first verify our approach by solving problems with known analytical solutions. The model we consider
is the dielectric layers of parallel slabs shown in Fig. 8. The unit of the periodicity is as shown in Fig. 9, in
which the (relative) dielectric constants and wave numbers are also given.

For the mesh we use 83,408 planar triangular elements whose edge length is approximately 1/12 of the
wavelength. The total degrees of freedom are 250,224. As the criterion of convergence for FGMRES we test
both 10�3 and 10�4.

The numerical results are shown in Table 1. The ‘error’ in this table indicates the average of the errors, rel-
ative to the exact solution, of the surface electric and magnetic current vectors j and m computed at the cen-
troid of the elements. The error is small for either of the convergence criteria of FGMRES (10�3 or 10�4).
From this result we conclude that the present approach is sufficiently accurate for engineering purposes.

Fig. 10 indicates the mode of convergence for FGMRES. This figure shows that the convergence starts to
slow down when the residual is below 0:6� 10�3 times the initial value. It is considered to be an important
future work to find more effective preconditioners and criteria for the termination in FGMRES.
Fig. 8. Dielectric layers of slabs.



Fig. 9. Model of dielectric layers of slabs.

Table 1
Numerical results

FGMRES tolerance Number of iterations Elapse time (s) Error (%)

j m

10�3 108 7771 0.624 1.52
10�4 267 18,409 0.355 0.161
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Fig. 10. Mode of convergence of FGMRES.
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5.2. Scattering by two-dimensional array of dielectric spheres

5.2.1. Single layer of spheres (normal incidence)

We next consider the scattering by two-dimensional array of dielectric spheres shown in Fig. 11. This exam-
ple is intended as a model of the so called slab photonic crystals.

In this example the spheres are arranged in one layer and the incident angle is perpendicular to this layer.
The unit cell is as shown in Fig. 12. The radius of the dielectric sphere is D ¼ 0:7L and the relative permittivity
of the dielectric sphere is �sph=�vacuum ¼ ð1:6Þ2. The surface of the sphere is divided into 5120 planar triangular
elements. Hence the total degrees of freedom are 15,360.



Fig. 11. Two-dimensional array of spherical dielectric spheres (normal incidence).

Fig. 12. Unit cell (normal incidence).
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For this model we have computed the energy reflectance in the frequency range of kL ¼ 1:5–10. The com-
puted energy reflectance is presented in Fig. 13. The solid line in Fig. 13 indicates the results by Stefanou and
Modinos [20], while the results shown by � are those obtained by the present formulation. Again, the agree-
ment is satisfactory.

This analysis, carried out with 8CPUs, took 4–18 min of elapsed time for one wavelength.

5.2.2. Single layer of spheres (oblique incidence)
We next consider the scattering of an obliquely incident electromagnetic waves by a single layer of dielectric

spheres shown in Fig. 14. The incident angle is 30� and the direction of the polarisation is that Einc is inclined
by 30� from the x2–x3 plane (where the spheres are) while H inc is parallel to the x2–x3 plane as indicated in
Fig. 14.

In this example the dielectric spheres are more densely packed than in the previous model, as one can see in
Fig. 15. The radius of the sphere is D ¼ 0:99L and the distance between neighbouring spheres is very small.
The sphere is divided into 8000 planar triangular elements and the total degrees of freedom are 24,000.
The relative dielectric constant of the spheres is 8.67.
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Fig. 14. Two-dimensional array of dielectric spheres (oblique incidence).
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The energy transmittance for the range of the wave number given by kL ¼ 2:635–4:024 has been computed
and plotted in Fig. 16. The solid lines in Fig. 16 indicate the results obtained by Ohtaka et al. [21], while �
indicate the results obtained with the present formulation.

Ohtaka et al. considers the case with D ¼ L, i.e. the case where the spheres are in contact, which is not iden-
tical with the case considered here. As is expected from this difference the results obtained with the present
formulation is slightly different from Ohtaka’s results. Indeed, they differ near kL ¼ 3:5 and the locations of
the spikes are slightly different in kL ¼ 3:6–3:8. Otherwise the agreement is satisfactory.

5.2.3. Woodpile crystals

Finally, we consider models of woodpile crystals. The first model we deal with in this section consists of five
layers of woodpiles (height: 200 nm, width: 180 nm) made of silicon (optical index: 3.45) which sit on a thin
silicon nitride layer whose thickness is 70 nm (optical index: 2). The distance between the centres of the wood-
piles in the directions of x2 and x3, denoted by d1;1, is 650 nm. The media above and below the structure are air
and silicon, respectively. The structure is subjected to a plane incident wave whose incident angle is 20� and
whose E component is within the incident plane. See Fig. 17 for the x1–x2 and x1–x3 cross-sections of the
model. (The x1 axis is taken downward from the air side into the silicon base side for technical reasons.) This
model has been considered by Gralak et al. [22] in their investigation of photonic band gaps in woodpile
crystals.



Fig. 15. Unit cell (oblique incidence).
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Fig. 16. Energy transmittance (oblique incidence).
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Fig. 17. x1–x2 and x1–x3 cross-sections of the woodpile crystal. Unit of length: lm.

Y. Otani, N. Nishimura / Journal of Computational Physics 227 (2008) 4630–4652 4647



 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6

Periodic FMM

E
ne

rg
y 

R
ef

le
ct

an
ce

Fig. 18. Reflectance of the woodpile crystal.
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In our investigation we have chosen two spatial periods (in x2;3 directions) of the structure as the unit cell.
The mesh we have used includes 28,800 elements with 43,104 edges. Hence the total number of unknowns is
86,208.

We have computed the energy reflectances of this structure for a range of wave numbers and compared the
results obtained with the present method with those reported by Gralak et al. [22]. As seen in Fig. 18, our
results agreed well with the most accurate results, denoted by ‘N ¼ 9� 9’, obtained by Gralak et al.

We next considered a similar model where we have eight layers of woodpiles instead of five. Also, parts of
woodpiles in the fourth and fifth layers are removed. See Fig. 19 for the precise geometry of the model. This
problem is chosen purely for the purpose of analysis and is not intended as a model of realistic structures. We
note that the method by Gralak et al. [22] cannot be applied to this problem since their method is for struc-
tures whose material property varies only unidirectionally at a depth in a layer. As is shown in Fig. 19, we
divide the domain into two parts by using a virtual boundary at x1 ¼ �0:8. This is because we cannot take
one cubic unit cell for this model since the height of the woodpile structure in the x1 direction is larger than
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Fig. 19. x1–x2 and x1–x3 cross-sections of the woodpile crystal with cuts.
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the spatial period. As has been stated, however, this limitation is not essential and can be removed without
difficulty. The mesh used for this model includes 40,608 surface elements and 60,720 edges. Hence the total
number of unknowns is 121,440.

We have computed the energy reflectances of this structure for a range of wave numbers and plotted the
results in Fig. 20 together with the perfect woodpile results computed in the previous example. A sharp pass-
band is seen near xd1;1=ð2pcÞ 	 0:3935.

To understand the mechanism of this passband, we have plotted the magnitudes (in log scale) of the real
part of the Poynting vector defined by S ¼ 1

2
ðE �HÞ, on a plane within the structure, whose precise location

is indicated by ‘inspection surface’ in Fig. 19. Fig. 21 shows the magnitudes of the real part of the Poynting
vector at xd1;1=ð2pcÞ 	 0:3935 where the reflectance takes the minimum value, and at xd1;1=ð2pcÞ 	 0:4035
which is outside the passband. This figure clearly shows that a localised mode exists at xd1;1=ð2pcÞ 	 0:3935.

The inversion in the process of preconditioning is carried out approximately using GMRES, which we ter-
minate after 30 iterations or when the norm of the error is less than 10�1 times its initial value. The maximum
CPU time for one analysis for one wave number was about 4H 44M in this example.
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Fig. 21. Magnitudes of the time averaged Poynting vector at xd1;1=ð2pcÞ 	 0:3935 (left) and at xd1;1=ð2pcÞ 	 0:4035 (right).
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6. Concluding remarks

(1) In this paper we presented an FMM for periodic boundary value problems for Maxwell’s equations in
3D. With the periodic Green’s function we could derive a periodised M2L formula, which enabled us to
solve periodic boundary value problems in the format of the ordinary FMM. The lattice sums included
in the periodised M2L formula were converted into Fourier integrals and evaluated accurately. We could
verify the proposed method by comparing the obtained numerical results with analytic solutions or with
numerical solutions from previous studies.
The problems considered include scattering by dielectric spheres and woodpile structures, both of which
are standard and important models in the field of photonic crystals. In the case of woodpile structures,
we could find a passband related to a localised mode. Through these numerical tests we could confirm
the efficiency and accuracy of the present method. These results indicate that the present method has a
potential as a tool for numerical analysis in the field of photonic crystals. In the future work we plan to
extend the applicability of the proposed method to more challenging problems including larger and more
realistic problems and metamaterial applications.

(2) In scattering problems for periodic structures, one may possibly have guided waves which propagate in
the directions of periodicity at certain wave numbers. One may also have leaky guided waves which are
known to cause large variations of the solutions for a very small change in wave numbers. The latter
phenomenon is known as Wood’s anomaly [23]. Generally speaking, the accuracy of numerical results
may become worse when Wood’s anomaly occurs. Our experience tells, however, that we can avoid this
problem of degraded accuracy just by using fine meshes. Further discussions on these issues will be pre-
sented elsewhere.
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Appendix. Evaluation of lattice sums

In this appendix we present our method of evaluating the lattice sum given by
P

x2L0O
m
n ð�xÞ.

To start with we note that the following recursive relations for Om
n hold:
Om
nþ1 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ mþ 1Þðn� mþ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� mÞðnþ mÞ

p
Om

n�1 �
2nþ 1

k
o

ox3

Om
n

� �
;

Omþ1
nþ1 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ mþ 1Þðnþ mþ 2Þ

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� mÞðn� m� 1Þ

p
Omþ1

n�1 �
2nþ 1

k
2

o

o�z
Om

n

� �
;

where 2 o
o�z ¼ o

ox1
þ i o

ox2
. We can thus reduce the evaluation of

P
x2L0O

m
n ð�xÞ to that of
Slm ¼
X
x2L0

L
o

ox3

� �l

2L
o

o�z

� �m

O0
0ðx� xÞeib�x

����
x¼0

:

We now divide the set L0 into four subgroups denoted by L0i (i ¼ 1; . . . ; 4) (see Fig. 22) and defined as
follows:
L01 ¼ fð0;x2;x3Þj x2 ¼ pL; x3 ¼ qL; p; q 2 Z; a 6 jpjg;
L02 ¼ fð0;x2;x3Þj x2 ¼ pL; x3 ¼ qL; p; q 2 Z; 2 6 jpj 6 a� 1g;
L03 ¼ fð0;x2;x3Þj x2 ¼ 0; x3 ¼ qL; q 2 Z; 2 6 jqjg;
L04 ¼ fð0;x2;x3Þj x2 ¼ �L; x3 ¼ qL; q 2 Z; 2 6 jqjg;
where a > 2 is a natural number. Correspondingly, the sum Slm is decomposed into the contributions from
these sets. Namely,
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Slm ¼ S1
lm þ S2

lm þ S3
lm þ S4

lm;
where Si
lm are defined by
Si
lm ¼

X
x2L0i

L
o

ox3

� �l

2L
o

o�z

� �m

O0
0ðx� xÞeib�x

����
x¼0

:

We now evaluate the numbers Si
lm after converting them into Fourier integrals as in the 2D case [7]. We here

list the results only:
S1
lm ¼

ilþm�1

kL

X1
j¼1

nl
3

Z 1

�1
ðn1 þ pÞm eaðib2�pÞ

pð1� eib2�pÞ dn1 þ
Z 1

�1
ðn1 � pÞm eað�ib2�pÞ

pð1� e�ib2�pÞ dn1

� �
;

where we have p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 þ n2
3 � ðkLÞ2

q
, n3 ¼ 2jpþ b3.
S2
ml ¼ ilþm p

kL

X
x2¼pL; 26p6a�1

eib2x2 þ ð�1Þme�ib2x2
�  X1

j¼�1
nl

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkLÞ2 � n2

3

q� �m

H ð1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkLÞ2 � n2

3

q
x2

� �
;

where n3 ¼ 2jpþ b3 and H ð1Þm is the Hankel function of the 1st kind and mth order.
S3
ml ¼ dm0

1

ikL
eibb3

Z 1

0
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; ð41Þ
where L03N is the set defined by
L03N ¼ fð0;x2;x3Þj x2 ¼ 0; x3 ¼ qL; q 2 Z; 2 6 jqj 6 b� 1g
and b > 2 is a natural number.
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where
L04N ¼ fð0;x2;x3Þj x2 ¼ �L; x3 ¼ qL; q 2 Z; 2 6 jqj 6 c� 1g;

c > 2 is a natural number and Jm is the Bessel function of the mth order. We evaluate the integrals in S1

lm, S3
lm

and S4
lm numerically using the steepest descent paths for the exponentials in the integrand as the paths of inte-

gration. One can increase the (integer) parameters a, b and c for accelerating the convergence of these inte-
grals, but one can do so at the cost of increased computational load for evaluating direct sums. In the
present investigation we have set a ¼ b ¼ c ¼ 100.
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